Misleading simplifications and where to find them (Slides & Mini-MOOC 11min)

The gist: to avoid getting fooled by them, we need to name our simplifying assumptions when modeling social scientific data. I’m experimenting with this visual approach to delivering information to those who think modeling is boring; feedback and improvement suggestions very welcome! [Similar presentation with between-individual longitudinal physical activity networks, presented at the Finnish Health Psychology conference: here]

I’m not as smooth as those talking heads on the interweb, so you may want just the slides. Download by clicking on the image below or watch at SlideShare.

SLIDE DECK:

misleading assumptions 1st slide

Mini-MOOC:

 

Note: Jan Vanhove thinks we shouldn’t  become paranoid with model assumptions; check his related blog post here!

The secret life of (complex dynamical) habits

It was recently brought to my attention that there exist such things as time and context, the flow of which affects human affairs considerably. Then there was this Twitter conversation about what habits actually are. In this post, I try to make sense of how to view health behavioural habits from the perspective of dynamical systems / complexity theory. I mostly draw from this article.

Habits are integral to human behaviour, and arguably necessary to account for in intervention research 1–3. Gardner 1 proposes a definition of habit as not a behaviour but “a process by which a stimulus generates an impulse to act as a result of a learned stimulus-response association”. Processes being seldom stable for all eternity, a complex dynamical systems perspective would propose some consequences of this definition.

What does it mean, when a process—such as habit—is stable? One way of conceiving this is considering the period of stability as a particular state a system can be in, while being subject to change. Barrett 4 proposes four features of dynamic system stability, in which a system’s states depend on the interactions among its components, as well as the system’s interactions with its environment.

corpus clock
Corpus Clock of Cambridge, where I’m writing this. The clock behaves chaotically so that it’s accurate every five minutes. A time-eating locust on top reminds us that neither habits, nor other human endeavours, escape this passage. Photo: Jim Linwood

First of all, stability always has a time frame, and stabilities at different time frames (such as stability over a month and a year) are interdependent. We ought to consider, how these time scales interact. For example, some factors which determine one’s motivation to go to the gym, such as mood, fluctuate on the scale from minutes to hours. Others may fluctuate on the daily level, and can be influenced by how much one slept the previous night or how stressful one’s workday was, whereas others fluctuate weekly. Then again, some—which increasingly resemble dispositions or personality factors—may be quite stable across decades. When inspecting a health behaviour, we ought to be looking at minimum the process which takes place on a time scale one level faster, and one lever slower than the one we are purportedly interested in 4. For example, how do daily levels of physical activity relate to weekly ones, and how do montly fluctuations affect the weekly fluctuations? Health psychologists could also classify each determinant of a health behaviour, based on the time scale it is thought to operate on. For example, if autonomous forms of motivation 5 seem to predict physical activity quite well cross-sectionally, we could attempt to measure it for a hundred days and investigate what the relevant time-scales of fluctuations are, in relation to those of the target behaviour. Such an exercise could also be helpful for deciding on the sampling frequency of experience sampling studies.

Second, processes in systems such as people have their characteristic attractor landscapes, and these landscapes can possibly be spelled out, along with the criteria associated with them. By attractors I mean here behaviours a person is drawn to, and an attractor landscape is the conglomerate of these behaviours. The cue-structure of the behaviours can be quite elaborate. For example, a person may smoke only, when they have drank alcohol (1) in a loud environment (2), among a relatively large group (3) of relatively unfamiliar people (4), one or two of whom are smokers (5); a situation where it is easier to have a private conversation if one joins another to go out for a cigarette. This highlights how the process of this person’s smoking habit can be very stable (mapping to the traditional conception of “habitual”), while also possibly being highly infrequent.

Note: Each of the aforementioned conditions for this person to smoke are insufficient by themselves, although all are needed to trigger smoking in this context. As a whole, they are sufficient to cause the person to smoke, but not always necessarily needed, because the person may smoke in some more-or-less limited other conditions, too. These conditions can also be called INUS (referring to Insufficient but Necessary criteria of an Unnecessary but Sufficient context for the behaviour) 6. Let that sink in a bit. As a corollary, if a criterion really is necessary, it may be an attractive target for intervention.

Third, the path through which change happens matters, a lot. Even when all determinants of behaviour are at a same value, the outcome may be very different depending on previous values of the outcome. This phenomenon is known as hysterisis, and it has been observed in various fields from physics (e.g. the form of a magnetic field depends on its past) to psychology (e.g. once a person becomes depressed due to excess stress, the stress level must be much lower to switch back to the normal state, than was needed for the shift to depression; 7). As a health behaviour example, just imagine how much easier it is to switch from a consistent training regime to doing no exercise at all, compared to doing it the other way around. Another way to think about is to consider that systems are “influenced by the residual stability of an antecedent regime” 4. As a consequence of stability being “just” a particular type of a path-dependent dynamic process 4,8, we need to consider the history leading up to the period where a habit is active. This forces investigators to consider attractor patterns and sensitivity to initial conditions: When did this stable (or attractor) state come about? If interactions in a system create the state of the system, which bio-psycho-social interactions are contributing to the stable state in question?

Fourth, learning processes such as those happening due to interventions usually affect a cluster of variables’ stabilities, not just one of them. To change habits, we naturally need to consider which changeable processes should be targeted, but it is probably impossible to manipulate these processes in isolation. This has been dubbed the “fat finger problem” (Borsboom 2018, personal communication); trying to change a specific variable, like attempting to press a specific key on the keyboard with gloves on, almost invariably ends up affecting neighbouring variables. Our target is dynamic and interconnected, often calling for coevolution of the intervention and the intervened.

It is obvious that people can relapse to their old habitual (attractor) behaviour after an intervention, and likely that extinction, unlearning and overwriting of cue-response patterns can help in breaking habits, whatever the definition. But the complex dynamics perspective puts a special emphasis on understanding the time scale and history of the intervenable processes, as well as highlighting the difficulty of changing one process while holding others constant, as the classical experimental setup would propose.

I would be curious of hearing thoughts about these clearly unfinished ideas.

  1. Gardner, B. A review and analysis of the use of ‘habit’ in understanding, predicting and influencing health-related behaviour. Health Psychol. Rev. 9, 277–295 (2015).
  2. Wood, W. Habit in Personality and Social Psychology. Personal. Soc. Psychol. Rev. 21, 389–403 (2017).
  3. Wood, W. & Rünger, D. Psychology of Habit. Annu. Rev. Psychol. 67, 289–314 (2016).
  4. Barrett, N. F. A dynamic systems view of habits. Front. Hum. Neurosci. 8, (2014).
  5. Ryan, R. M. & Deci, E. L. Self-determination theory: Basic psychological needs in motivation, development, and wellness. (Guilford Publications, 2017).
  6. Mackie, J. L. Causes and Conditions. Am. Philos. Q. 2, 245–264 (1965).
  7. Cramer, A. O. J. et al. Major Depression as a Complex Dynamic System. PLoS ONE 11, (2016).
  8. Roe, R. A. Test validity from a temporal perspective: Incorporating time in validation research. Eur. J. Work Organ. Psychol. 23, 754–768 (2014).

 

Evaluating intervention program theories – as theories

How do we figure out, whether our ideas worked out? To me, it seems that in psychology we seldom rigorously think about this question, despite having been criticised for dubious inferential practices for at least half a century. You can download a pdf  of my talk at the Finnish National Institute for Health and Welfare (THL) here, or see the slide show in the end of this post. Please solve the three problems in the summary slide! 🙂

TLDR: is there a reason, why evaluating intervention program theories shouldn’t follow the process of scientific inference?

summary

Getting Started With Bayes

This post presents a Bayesian roundtable I convened for the EHPS/DHP 2016 health psychology conference. Slides for the three talks are included.

bayes healthpsych cover

So, we kicked off the session with Susan Michie and acknowledged Jamie Brown who was key in making it happen, but could not attend.

start

Robert West was the first to present, you’ll find his slides “Bayesian analysis: a brief introductionhere. This presentation gave a brief introduction to Bayes and how belief updating with Bayes Factors works.

I was the second speaker, building on Robert’s presentation. Here are slides for my talk, where I introduced some practical resources to get started with Bayes. The slides are also embedded below (some slides got corrupted by Slideshare, so the ones in the .ppt link are a bit nicer).

The third and final presentation was by Niall Bolger. In his talk, he gave a great example of how using Bayes in a multilevel model enabled him to incorporate more realistic assumptions and—consequently—evaporate a finding he had considered somewhat solid. His slides, “Bayesian Estimation: Implications for Modeling Intensive Longitudinal Data“, are here.

Let me know if you don’t agree with something (especially in my presentation) or have ideas regarding how to improve the methods in (especially health) psychology research!