Replication is impossible, falsification unnecessary and truth lies in published articles (?)

Writing this piece crammed in the backseat of a car, because I’m a zealot (also, because I wanted to have a picture here).

I recently peer reviewed a partly shocking piece called “Reproducibility in Psychological Science: When Do Psychological Phenomena Exist?“ (Iso-Ahola, 2017). In the article, the author makes some very good points, which unfortunately get drowned under very strange statements and positions. Me, Eiko Fried and Etienne LeBel addressed those shortly in a commentary (preprint; UPDATE: published piece). Below, I’d like to expand upon some additional thoughts I had about the piece, to answer Martin Hagger’s question.

On complexity

When all parts do the same thing on a certain scale (planets on Newtonian orbits), their behaviour is relatively easy to predict for many purposes. Same thing, when all molecules act independently in a random fashion: the risk that most or all beer molecules in a pint move upward at the same time is ridiculously low, and thus we don’t have to worry about the yellow (or black, if you’re into that) gold escaping the glass. Both situations are easy-ish systems to describe, as opposed to complex systems where the interactions, sensitivity to initial conditions etc. can produce a huge variety of behaviour and states. Complexity science is the study of these phenomena, which have become increasingly common since the 1900s (Weaver, 1948).

Iso-Ahola (2017) quotes (though somewhat unfaithfully) the complexity scientist Bar-Yam (2016b): “for complex systems (humans), all empirical inferences are false… by their assumptions of replicability of conditions, independence of different causal factors, and transfer to different conditions of prior observations”. He takes this to mean that “phenomena’s existence should not be defined by any index of reproducibility of findings” and that “falsifiability and replication are of secondary importance to advancement of scientific fields”. But this is a highly misleading representation of the complexity science perspective.

In Bar-Yam’s article, he used an information theoretic approach to analyse the limits of what we can say about complex systems. The position is that while full description of systems via empirical observation is impossible, we should aim to identify the factors which are meaningful in terms of replicability of findings, or the utility of the acquired knowledge. As he elaborates elsewhere: “There is no utility to information that is only true in a particular instance. Thus, all of scientific inquiry should be understood as an inquiry into universality—the determination of the degree to which information is general or specific” (Bar-Yam, 2016a, p. 19).

This is fully in line with the Fisher quote presented in Mayo’s slides:

Fisher quote Mayo

The same goes for replications; no single one-lab study can disprove a finding:

“’Thus a few stray basic statements contradicting a theory will hardly induce us to reject it as falsified. We shall take it as falsified only if we discover a reproducible effect which refutes the theory. In other words, we only accept the falsification if a low-level empirical hypothesis which describes such an effect is proposed and  corroborated’ (Popper, 1959, p. 66)” (see Holtz & Monnerjahn, 2017)

So, if the high-quality non-replication replicates, one must consider that something may be off with the original finding. This leads us to the question of what researchers should study in the first place.

On research programmes

Lakatos (1971) posits a difference between progressive and degenerating research lines. In a progressive research line, investigators explain a negative result by modifying the theory in a way which leads to new predictions that subsequently pan out. On the other hand, coming up with explanations that do not make further contributions, but rather just explain away the negative finding, leads to a degenerative research line. Iso-Ahola quotes Lakatos to argue that, although theories may have a “poor public record” that should not be denied, falsification should not lead to abandonment of theories. Here’s Lakatos:

“One may rationally stick to a degenerating [research] programme until it is overtaken by a rival and even after. What one must not do is to deny its poor public record. […] It is perfectly rational to play a risky game: what is irrational is to deceive oneself about the risk” (Lakatos, 1971, p. 104)

As Meehl (1990, p. 115) points out, the quote continues as follows:

“This does not mean as much licence as might appear for those who stick to a degenerating programme. For they can do this mostly only in private. Editors of scientific journals should refuse to publish their papers which will, in general, contain either solemn reassertions of their position or absorption of counterevidence (or even of rival programmes) by ad hoc, linguistic adjustments. Research foundations, too, should refuse money.” (Lakatos, 1971, p. 105)

Perhaps researchers should pay more attention which program they are following?

As an ending note, here’s one more interesting quote: “Zealotry of reproducibility has unfortunately reached the point where some researchers take a radical position that the original results mean nothing if not replicated in the new data.” (Iso-Ahola, 2017)

For explorative research, I largely agree with these zealots. I believe exploration is fine and well, but the results do mean nearly nothing unless replicated in new data (de Groot, 2014). One cannot hypothesise and confirm with the same data.

Perhaps I focus too much on the things that were said in the paper, not what the author actually meant, and we do apologise if we have failed to abide with the principle of charity in the commentary or this blog post. In a later post, I will attempt to show how the ten criteria Iso-Ahola proposed could be used to evaluate research.

ps. If you’re interested in replication matters in health psychology, there’s an upcoming symposium on the topic in EHPS17 featuring Martin Hagger, Gjalt-Jorn Peters, Rik Crutzen, Marie Johnston and me. My presentation is titled “Disentangling replicable mechanisms of complex interventions: What to expect and how to avoid fooling ourselves?


Bar-Yam, Y. (2016a). From big data to important information. Complexity, 21(S2), 73–98.

Bar-Yam, Y. (2016b). The limits of phenomenology: From behaviorism to drug testing and engineering design. Complexity, 21(S1), 181–189.

de Groot, A. D. (2014). The meaning of “significance” for different types of research [translated and annotated by Eric-Jan Wagenmakers, Denny Borsboom, Josine Verhagen, Rogier Kievit, Marjan Bakker, Angelique Cramer, Dora Matzke, Don Mellenbergh, and Han L. J. van der Maas]. Acta Psychologica, 148, 188–194.

Holtz, P., & Monnerjahn, P. (2017). Falsificationism is not just ‘potential’ falsifiability, but requires ‘actual’ falsification: Social psychology, critical rationalism, and progress in science. Journal for the Theory of Social Behaviour.

Iso-Ahola, S. E. (2017). Reproducibility in Psychological Science: When Do Psychological Phenomena Exist? Frontiers in Psychology, 8.

Lakatos, I. (1971). History of science and its rational reconstructions. Springer. Retrieved from

Meehl, P. E. (1990). Appraising and amending theories: The strategy of Lakatosian defense and two principles that warrant it. Psychological Inquiry, 1(2), 108–141.

Weaver, W. (1948). Science and complexity. American Scientist, 36(4), 536–544.


One thought on “Replication is impossible, falsification unnecessary and truth lies in published articles (?)

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s